Educators educating Educators

Jul 23

Memory Recall

Consolidation:  Recall of an old memory results in the formation of a new memory due to a chemical change called consolidation


Every time a memory is recalled, reconfigured, and restored, a chemical process called consolidation is taking place.

When previously consolidated memories are recalled, they must be reprocessed if they are to remain in durable form because they revert to their prior unstable and liable nature. Not only are retrieved memories changed due to the existence of new information, they are also altered by interaction with other long-term memories. The brain is constantly receiving new information, evaluating the new information by connecting the new information to previously encountered and stored information, and then restoring the information.

In addition to his research detailed above, Ebbinghaus was the first to demonstrate the existence of two types of memory systems, a short form, and a long form. He further demonstrated that repetition could convert one into the other under certain conditions. The process of converting short-term memory traces to longer, sturdier forms is called consolidation.

At first, a memory is flexible, labile, subject to amendment, and at great risk for extinction. Most of the inputs we encounter in a given day fall into this category. But some memories stick, strengthen with time and become persistent, and eventually reach a state called long-term memory, which are retrievable and resistant to amendment.

When the brain is exposed to new information, the grand central station of memory (the hippocampus) searches its exciting database (in the cortex) for related information. It retrieves this information, and compares the new information with the existing information by looking for patterns (similarities and differences) between the two information sources. The new information results the previously existing information. The brain then sends the recreated information as a whole back for new storage as a new memory because the stored, recreated information is chemically different from the prior recalled information.

John Medina, author of Brain Rules, explains long-term memory formation (9:19)


In collaboration with David Glanzman and Craig Bailey, Eric Kandel (see Nobel Prize tab) identified a protein involved in long-term memory storage. Thus, short-term memory had been linked to functional changes in existing synapses, while long-term memory was associated with a change in the number of synaptic connections.

An example of how the mind examines similarities and differences between sources of information is with schemas. A schema is a cognitive framework that guide memory, aide in the interpretation of events, and influence how we retrieve stored memories. The following video illustrates the usefulness of schemas.




In case you get bored with the lazy days of summer and want to get a jump preparing for the coming school year, I added to Stuff4Educators a section called How to Study Better based on research from Harvard Medical School that highlights four science-backed ways towards better learning (Hint: drop the highlighter). Additionally, I posted a YouTube video under exercise from the Dana Foundation that won the Northwest Emmy award called Exercise and the Brain that explores the benefits of exercise on the brain and learning. Finally, some books that I have read this past year and found to be stimulating are listed.